1. 赋值运算符函数
题目:如下为类型CMyString的声明,请为该类型添加赋值运算符函数。
class CMyString
{
public:
CMyString(char* pData = nullptr);
CMyString(const CMyString& str);
~CMyString(void);
CMyString& operator = (const CMyString& str);
void Print();
private:
char* m_pData;
};
当面试官要求应聘者定义一个赋值运算符函数时,他会在检查应聘者写出的代码时关注如下几点:
是否把返回值的类型声明为该类型的引用,并在函数结束前返回实例自身的引用(*this)。只有返回一个引用,才可以允许连续赋值。否则,如果函数的返回值是void,则应用该赋值运算符将不能进行连续赋值。假设有3个CMyString的对象:strl、str2和str3,在程序中语句str1=str2=str3将不能通过编译。
是否把传入的参数的类型声明为常量引用。如果传入的参数不是引用而是实例,那么从形参到实参会调用一次复制构造函数。把参数声明为引用可以避免这样的无谓消耗,能提高代码的效率。同时,我们在赋值运算符函数内不会改变传入的实例的状态,因此应该为传入的引用参数加上const关键字。
是否释放实例自身已有的内存。如果我们忘记在分配新内存之前释放自身已有的空间,则程序将出现内存泄漏。
判断传入的参数和当前的实例(*this)是不是同一个实例。如果是同一个,则不进行赋值操作,直接返回。如果事先不判断就进行赋值,那么在释放实例自身内存的时候就会导致严重的问题:当*this和传入的参数是同一个实例时,一旦释放了自身的内存,传入的参数的内存也同时被释放了,因此再也找不到需要赋值的内容了。
经典的解法,适用于初级程序员
当我们完整地考虑了上述4个方面之后,可以写出如下的代码:
CMyString& CMyString::operator = (const CMyString& str)
{
if(this == &str)
return *this;
delete []m_pData;
m_pData = nullptr;
m_pData = new char[strlen(str.m_pData) + 1];
strcpy(m_pData, str.m_pData);
return *this;
}
考虑异常安全性的解法,高级程序员必备
在前面的函数中,我们在分配内存之前先用delete释放了实例m_pData的内存。如果此时内存不足导致new char抛出异常,则m_pData将是一个空指针,这样非常容易导致程序崩溃。也就是说,一旦在赋值运算符函数内部抛出一个异常,CMyString的实例不再保持有效的状态,这就违背了异常安全性(Exception Safety)原则。
要想在赋值运算符函数中实现异常安全性,我们有两种方法。一种简单的办法是我们先用new分配新内容,再用delete释放已有的内容。这样只在分配内容成功之后再释放原来的内容,也就是当分配内存失败时我们能确保CMyString的实例不会被修改。我们还有一种更好的办法,即先创建一个临时实例,再交换临时实例和原来的实例。下面是这种思路的参考代码:
CMyString& CMyString::operator = (const CMyString& str)
{
if(this != &str)
{
CMyString strTemp(str);
char*pTemp=strTemp.m_pData;
strTemp.m_pData=m_pData;
m_pData=pTemp;
}
return *this;
}
在这个函数中,我们先创建一个临时实例strTemp,接着把strTemp.m_pData和实例自身的m_pData进行交换。由于strTemp是一个局部变量,但程序运行到if的外面时也就出了该变量的作用域,就会自动调用strTemp的析构函数,把strTemp.m_pData所指向的内存释放掉。由于strTemp.m_pData指向的内存就是实例之前m_pData的内存,这就相当于自动调用析构函数释放实例的内存。
在新的代码中,我们在CMyString的构造函数里用new分配内存。如果由于内存不足抛出诸如bad alloc等异常,但我们还没有修改原来实例的状态,因此实例的状态还是有效的,这也就保证了异常安全性。
源代码:https://github.com/zhedahht/CodingInterviewChinese2/tree/master/01_AssignmentOperator